
Function reference
-
ExPanD()
- Explore Your Data (ExPanD)
Workflow functions
Functions, mostly also used by ExPanD, that facilitate a typical exploratory data analysis workflow
-
prepare_missing_values_graph()
- Prepares a Graph Displaying Missing Values in Panel Data
-
treat_outliers()
- Treats Outliers in Numerical Data
-
prepare_descriptive_table()
- Prepares a Table of Descriptive Statistics
-
prepare_ext_obs_table()
- Prepares a Table Displaying Extreme Observations
-
prepare_by_group_bar_graph()
- Prepares a by Group Bar Graph
-
prepare_by_group_trend_graph()
- Prepares a By Group Trend Graph
-
prepare_by_group_violin_graph()
- Prepares a by Group Violin Graph
-
prepare_trend_graph()
- Prepares a Trend Graph
-
prepare_quantile_trend_graph()
- Prepares a Quantile Trend Graph
-
prepare_correlation_table()
- Prepares a Correlation Table
-
prepare_correlation_graph()
- Prepares a Correlation Graph
-
prepare_scatter_plot()
- Prepares a Scatter Plot
-
prepare_regression_table()
- Prepares a Regression Table
Data
Data set used to showcase the functionality of ExPanD. ‘russell_3000’ is a set of financial accounting and stock return data for a sample of U.S. firms that are members of the Russell 3000 index. ‘worldbank’ is a country year panel of macro-economic data provided by the World Bank API.
-
russell_3000
- Annual Financial Accounting and Stock Return Data for a Sample of Russell 3000 Firms (2013-2016)
-
russell_3000_data_def
- Data Definitions for
russell_3000
Data Set
-
ExPanD_config_russell_3000
- Default Configuration to use with ExPanD and the Russell 3000 Data Set
-
worldbank
- A Snapshot of Macroeconomic Data as Provided by the World Bank API (1960 - 2018)
-
worldbank_data_def
- Data Definitions for
worldbank
Data Set
-
worldbank_var_def
- Variable Definitions to Construct an Analysis Sample Based on the
worldbank
Data Set
-
ExPanD_config_worldbank
- Default Configuration to Use with ExPanD and the
worldbank
Data Set